Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.274
Filtrar
1.
Soft Matter ; 20(13): 2998-3006, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482724

RESUMO

Phosphatidic acid (PA) is an anionic lipid that preferentially interacts with proteins in a diverse set of cellular processes such as transport, apoptosis, and neurotransmission. One such interaction is that of the PA lipids with the proteins of voltage-sensitive ion channels. In comparison to several other similarly charged anionic lipids, PA lipids exhibit much stronger interactions. Intrigued and motivated by this finding, we sought out to gain deeper understanding into the electrostatic interactions of anionic lipids with charged proteins. Using the voltage sensor domain (VSD) of the KvAP channel as a model system, we performed long-timescale atomistic simulations to analyze the interactions of POPA, POPG, and POPI lipids with arginines (ARGs). Our simulations reveal two mechanisms. First, POPA is able to interact not only with surface ARGs but is able to snorkel and interact with a buried arginine. POPG and POPI lipids on the other hand show weak interactions even with both the surface and buried ARGs. Second, deprotonated POPA with -2 charge is able to break the salt-bridge connection between VSD protein segments and establish its own electrostatic bond with the ARG. Based on these findings, we propose a headgroup size hypothesis for preferential solvation of proteins by charged lipids. These findings may be valuable in understanding how PA lipids could be modulating kinematics of transmembrane proteins in cellular membranes.


Assuntos
Arginina , Ácidos Fosfatídicos , Modelos Moleculares , Eletricidade Estática , Membrana Celular
2.
Toxins (Basel) ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535809

RESUMO

Aegerolysins are a family of proteins that recognize and bind to specific membrane lipids or lipid domains; hence they can be used as membrane lipid sensors. Although aegerolysins are distributed throughout the tree of life, the most studied are those produced by the fungal genus Pleurotus. Most of the aegerolysin-producing mushrooms code also for proteins containing the membrane attack complex/perforin (MACPF)-domain. The combinations of lipid-sensing aegerolysins and MACPF protein partners are lytic for cells harboring the aegerolysin membrane lipid receptor and can be used as ecologically friendly bioinsecticides. In this work, we have recombinantly expressed four novel aegerolysin/MACPF protein pairs from the mushrooms Heterobasidion irregulare, Trametes versicolor, Mucidula mucida, and Lepista nuda, and compared these proteins with the already studied aegerolysin/MACPF protein pair ostreolysin A6-pleurotolysin B from P. ostreatus. We show here that most of these new mushroom proteins can form active aegerolysin/MACPF cytolytic complexes upon aegerolysin binding to membrane sphingolipids. We further disclose that these mushroom aegerolysins bind also to selected glycerophospholipids, in particular to phosphatidic acid and cardiolipin; however, these interactions with glycerophospholipids do not lead to pore formation. Our results indicate that selected mushroom aegerolysins show potential as new molecular biosensors for labelling phosphatidic acid.


Assuntos
Agaricales , Proteínas Fúngicas , Proteínas Hemolisinas , Lipídeos de Membrana , Trametes , Perforina , Glicerofosfolipídeos , Ácidos Fosfatídicos
3.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542678

RESUMO

This study aimed to characterize the composition of lipids in the red blood cells (RBCs) of adolescent swimmers and correlate this lipidome with the aerobic performance of the athletes. Five experimental assessments were performed by 37 adolescent swimmers. During the first session, the athletes went to the laboratory facility for venous blood sampling. The critical velocity protocol was conducted over the 4 subsequent days to measure aerobic performance (CV), comprising maximal efforts over distances of 100, 200, 400, and 800 m in a swimming pool. RBCs were obtained and extracted for analysis using the liquid chromatography-high resolution mass spectrometry untargeted approach. A total of 2146 ions were detected in the RBCs, of which 119 were identified. The enrichment pathway analysis indicated intermediary lipids in the glycerophospholipid, glycerolipid, sphingolipid, linoleic acid, and alpha-linolenic metabolisms, as well as pentose and glucuronate interconversions. A significant impact of the intermediary lipids was observed for the glycerophospholipid metabolism, including phosphatidylethanolamine (PE), phosphatidylcholine (PC), 1-acyl-sn-glycero-3-phosphocholine, sn-glycerol 3-phosphate, and phosphatidic acid. Inverse and significant associations were observed for PE 18:2/18:3 (r = -0.39; p = 0.015), PC 18:3/20:0 (r = -0.33; p = 0.041), and phosphatidic acid 18:0/0:0 (r = -0.47; p = 0.003) with aerobic performance. Swimmers who exhibited higher levels of aerobic performance also had the lowest abundance of PE, PC, and phosphatidic acid.


Assuntos
Glicerofosfolipídeos , Fosfatidilcolinas , Adolescente , Humanos , Ácidos Fosfatídicos , Glicerilfosforilcolina , Eritrócitos
4.
Biochem Pharmacol ; 222: 116106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442792

RESUMO

Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.


Assuntos
Neoplasias , Fosfatidato Fosfatase , Fosfatidato Fosfatase/química , Fosfatidato Fosfatase/metabolismo , Adipogenia , Isoformas de Proteínas/metabolismo , Ácidos Fosfatídicos/metabolismo , Neoplasias/tratamento farmacológico , Compostos Orgânicos
5.
Cell Host Microbe ; 32(3): 302-303, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38484710

RESUMO

Phosphatidic acid (PA) and reactive oxygen species (ROS) are cellular messengers that relay signals to regulate diverse biological processes. In recent issues of Cell Host & Microbe and Cell, Qi et al. and Kong et al., respectively, investigate diacylglycerol kinase 5-mediated PA in regulating ROS signaling and plant immunity.


Assuntos
Diacilglicerol Quinase , Transdução de Sinais , Espécies Reativas de Oxigênio , Diacilglicerol Quinase/metabolismo , Ácidos Fosfatídicos
6.
Cell Host Microbe ; 32(3): 425-440.e7, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309260

RESUMO

In plant immunity, phosphatidic acid (PA) regulates reactive oxygen species (ROS) by binding to respiratory burst oxidase homolog D (RBOHD), an NADPH oxidase responsible for ROS production. Here, we analyze the influence of PA binding on RBOHD activity and the mechanism of RBOHD-bound PA generation. PA binding enhances RBOHD protein stability by inhibiting vacuolar degradation, thereby increasing chitin-induced ROS production. Mutations in diacylglycerol kinase 5 (DGK5), which phosphorylates diacylglycerol to produce PA, impair chitin-induced PA and ROS production. The DGK5 transcript DGK5ß (but not DGK5α) complements reduced PA and ROS production in dgk5-1 mutants, as well as resistance to Botrytis cinerea. Phosphorylation of S506 residue in the C-terminal calmodulin-binding domain of DGK5ß contributes to the activation of DGK5ß to produce PA. These findings suggest that DGK5ß-derived PA regulates ROS production by inhibiting RBOHD protein degradation, elucidating the role of PA-ROS interplay in immune response regulation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácidos Fosfatídicos/metabolismo , NADPH Oxidases/genética , Imunidade Vegetal/genética , Quitina/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant J ; 118(2): 423-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184843

RESUMO

Upland cotton, the mainly cultivated cotton species in the world, provides over 90% of natural raw materials (fibers) for the textile industry. The development of cotton fibers that are unicellular and highly elongated trichomes on seeds is a delicate and complex process. However, the regulatory mechanism of fiber development is still largely unclear in detail. In this study, we report that a homeodomain-leucine zipper (HD-ZIP) IV transcription factor, GhHOX4, plays an important role in fiber elongation. Overexpression of GhHOX4 in cotton resulted in longer fibers, while GhHOX4-silenced transgenic cotton displayed a "shorter fiber" phenotype compared with wild type. GhHOX4 directly activates two target genes, GhEXLB1D and GhXTH2D, for promoting fiber elongation. On the other hand, phosphatidic acid (PA), which is associated with cell signaling and metabolism, interacts with GhHOX4 to hinder fiber elongation. The basic amino acids KR-R-R in START domain of GhHOX4 protein are essential for its binding to PA that could alter the nuclear localization of GhHOX4 protein, thereby suppressing the transcriptional regulation of GhHOX4 to downstream genes in the transition from fiber elongation to secondary cell wall (SCW) thickening during fiber development. Thus, our data revealed that GhHOX4 positively regulates fiber elongation, while PA may function in the phase transition from fiber elongation to SCW formation by negatively modulating GhHOX4 in cotton.


Assuntos
Gossypium , Fatores de Transcrição , Gossypium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Fosfatídicos/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Cell ; 187(3): 609-623.e21, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244548

RESUMO

Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Diacilglicerol Quinase , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diacilglicerol Quinase/metabolismo , NADPH Oxidases/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosforilação , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
9.
Proteins ; 92(3): 411-417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909765

RESUMO

A progressive aggregation of misfolded proteins is a hallmark of numerous pathologies including diabetes Type 2, Alzheimer's disease, and Parkinson's disease. As a result, highly toxic protein aggregates, which are known as amyloid fibrils, are formed. A growing body of evidence suggests that phospholipids can uniquely alter the secondary structure and toxicity of amyloid aggregates. However, the role of phosphatidic acid (PA), a unique lipid that is responsible for cell signaling and activation of lipid-gated ion channels, in the aggregation of amyloidogenic proteins remains unclear. In this study, we investigate the role of the length and degree of unsaturation of fatty acids (FAs) in PA in the structure and toxicity of lysozyme fibrils formed in the presence of this lipid. We found that both the length and saturation of FAs in PA uniquely altered the secondary structure of lysozyme fibrils. However, these structural differences in PA caused very little if any changes in the morphology of lysozyme fibrils. We also utilized cell toxicity assays to determine the extent to which the length and degree of unsaturation of FAs in PA altered the toxicity of lysozyme fibrils. We found that amyloid fibrils formed in the presence of PA with C18:0 FAs exerted significantly higher cell toxicity compared to the aggregates formed in the presence of PA with C16:0 and C18:1 FAs. These results demonstrated that PA can be an important player in the onset and spread of amyloidogenic diseases.


Assuntos
Muramidase , Ácidos Fosfatídicos , Muramidase/química , Amiloide/química , Estrutura Secundária de Proteína , Proteínas Amiloidogênicas
10.
Plant Physiol Biochem ; 206: 108208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039584

RESUMO

Previous findings have shown that phospholipase D (PLD) contributes to the response to long-term chilling stress in barley by regulating the balance of proline (Pro) levels. Although Pro accumulation is one of the most prominent changes in barley roots exposed to this kind of stress, the regulation of its metabolism during recovery from stress remains unclear. Research has mostly focused on the responses to stress per se, and not much is known about the dynamics and mechanisms underlying the subsequent recovery. The present study aimed to evaluate how PLD, its product phosphatidic acid (PA), and diacylglycerol pyrophosphate (DGPP) modulate Pro accumulation in barley during recovery from long-term chilling stress. Pro metabolism involves different pathways and enzymes. The rate-limiting step is mediated by pyrroline-5-carboxylate synthetase (P5CS) in its biosynthesis, and by proline dehydrogenase (ProDH) in its catabolism. We observed that Pro levels decreased in recovering barley roots due to an increase in ProDH activity. The addition of 1-butanol, a PLD inhibitor, reverted this effect and altered the relative gene expression of ProDH. When barley tissues were treated with PA before recovery, the fresh weight of roots increased and ProDH activity was stimulated. These data contribute to our understanding of how acidic membrane phospholipids like PA help to control Pro degradation during recovery from stress.


Assuntos
Hordeum , Hordeum/metabolismo , Resposta ao Choque Frio , Transdução de Sinais , Prolina Oxidase/metabolismo , Ácidos Fosfatídicos/metabolismo , Prolina/metabolismo
11.
New Phytol ; 241(4): 1543-1558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031462

RESUMO

Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.


Assuntos
Aciltransferases , Lipídeos de Membrana , Triglicerídeos , Aciltransferases/metabolismo , Plastídeos/metabolismo , Ácidos Fosfatídicos , Nitrogênio
12.
Plant Commun ; 5(1): 100659, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434356

RESUMO

Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Vírus de RNA de Cadeia Positiva , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Vírus de RNA de Cadeia Positiva/metabolismo , Ácidos Fosfatídicos , Sistema de Sinalização das MAP Quinases , Fosforilação
13.
Adv Biol Regul ; 91: 101000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081756

RESUMO

Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.


Assuntos
Fosfolipase D , Humanos , Animais , Fosfolipase D/genética , Fosfolipase D/metabolismo , Plantas , Transdução de Sinais , Ácidos Fosfatídicos/metabolismo , Colina , Mamíferos/metabolismo
14.
Mol Biol Cell ; 35(3): ar39, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117597

RESUMO

Phospholipase D1 (PLD1) activity is essential for the stimulated exocytosis of secretory vesicles where it acts as a lipid-modifying enzyme to produces phosphatidic acid (PA). PLD1 localizes to the plasma membrane and secretory vesicles, and PLD1 inhibition or knockdowns reduce the rate of fusion. However, temporal data resolving when and where PLD1 and PA are required during exocytosis is lacking. In this work, PLD1 and production of PA are measured during the trafficking, docking, and fusion of secretory vesicles in PC12 cells. Using fluorescently tagged PLD1 and a PA-binding protein, cells were imaged using TIRF microscopy to monitor the presence of PLD1 and the formation of PA throughout the stages of exocytosis. Single docking and fusion events were imaged to measure the recruitment of PLD1 and the formation of PA. PLD1 is present on mobile, docking, and fusing vesicles and also colocalizes with Syx1a clusters. Treatment of cells with PLD inhibitors significantly reduces fusion, but not PLD1 localization to secretory vesicles. Inhibitors also alter the formation of PA; when PLD1 is active, PA slowly accumulates on docked vesicles. During fusion, PA is reduced in cells treated with PLD1 inhibitors, indicating that PLD1 produces PA during exocytosis.


Assuntos
Ácidos Fosfatídicos , Fosfolipase D , Ratos , Animais , Ácidos Fosfatídicos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Vesículas Secretórias/metabolismo , Fosfolipase D/metabolismo , Exocitose/fisiologia
15.
Plant Sci ; 338: 111900, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863269

RESUMO

Robust agricultural yields depend on the plant's ability to fix carbon amid variable environmental conditions. Over seasonal and diurnal cycles, the plant must constantly adjust its metabolism according to available resources or external stressors. The metabolic changes that a plant undergoes in response to stress are well understood, but the long-distance signaling mechanisms that facilitate communication throughout the plant are less studied. The phloem is considered the predominant conduit for the bidirectional transport of these signals in the form of metabolites, nucleic acids, proteins, and lipids. Lipid trafficking through the phloem in particular attracted our attention due to its reliance on soluble lipid-binding proteins (LBP) that generate and solubilize otherwise membrane-associated lipids. The Phloem Lipid-Associated Family Protein (PLAFP) from Arabidopsis thaliana is generated in response to abiotic stress as is its lipid-ligand phosphatidic acid (PA). PLAFP is proposed to transport PA through the phloem in response to drought stress. To understand the interactions between PLAFP and PA, nearly 100 independent systems comprised of the protein and one PA, or a plasma membrane containing varying amounts of PA, were simulated using atomistic classical molecular dynamics methods. In these simulations, PLAFP is found to bind to plant plasma membrane models independent of the PA concentration. When bound to the membrane, PLAFP adopts a binding pose where W41 and R82 penetrate the membrane surface and anchor PLAFP. This triggers a separation of the two loop regions containing W41 and R82. Subsequent simulations indicate that PA insert into the ß-sandwich of PLAFP, driven by interactions with multiple amino acids besides the W41 and R82 identified during the insertion process. Fine-tuning the protein-membrane and protein-PA interface by mutating a selection of these amino acids may facilitate engineering plant signaling processes by modulating the binding response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Membrana , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Lipídeos , Ácidos Fosfatídicos/metabolismo , Plantas/metabolismo , Proteínas de Membrana/metabolismo
16.
Prog Lipid Res ; 93: 101267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154743

RESUMO

Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.


Assuntos
Ácidos Fosfatídicos , Transdução de Sinais , Animais , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais/fisiologia , Plantas/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127985

RESUMO

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Assuntos
Fígado Gorduroso , Lipodistrofia , Hipernutrição , Masculino , Ratos , Animais , Aciltransferases/metabolismo , Glicerol , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ratos Sprague-Dawley , Lipodistrofia/genética , Tecido Adiposo Branco/metabolismo , Ácidos Fosfatídicos , Inflamação , Fosfatos
18.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003299

RESUMO

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Galactolipídeos/metabolismo , Glicerol/metabolismo , Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sementes/genética , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Óleos de Plantas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Chem Phys Lipids ; 257: 105350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858615

RESUMO

Transthyretin (TTR) is a small, ß-sheet-rich tetrameric protein that transports thyroid hormone thyroxine and retinol. Phospholipids, including phosphatidic acid (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin amyloidosis.


Assuntos
Amiloide , Ácidos Graxos , Pré-Albumina , Ácidos Fosfatídicos , Proteínas Amiloidogênicas
20.
Ecotoxicol Environ Saf ; 266: 115610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866036

RESUMO

Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCß2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCß2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCß2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCß2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCß2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.


Assuntos
Cádmio , Células Intersticiais do Testículo , Ratos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Gotículas Lipídicas/metabolismo , Fosfolipase C beta/metabolismo , Ácidos Fosfatídicos/metabolismo , Diglicerídeos/metabolismo , Transdução de Sinais , Esteroides/metabolismo , Progesterona/metabolismo , Colesterol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...